
6.07
w

ith
 C

D
 ➔

CD-content: trial versions, .NET tools & more

• novaPDF SDK 5.0
• Vanatec OpenAccess
• Scissors Mobile 2007
• SmartInspect 2.1.1

www.dotnet-magazin.de

.NET, Visual Studio & More

• TeamCity 2.0
• TestAdvantage 2007 Vol.1
• TurboDB Managed
…

• Advantage Database Server 8.1
• Allora V5.0.3
• Doc-to-Help (preview)
• FlyGrid.NET 1.5

InteInteInteInteInteInteInterviewviewviewviewviewviewview

Th
omas CaspersWiiie

sichhheheher ist die WCCC
FFF?F?F

■ SQL Server 2005 – extra data security
■ CAS-Sandbox – Security without code

.NET Security

Quellcodeverwaltung
war gestern

Continuous Integration with VSTS
Power boost thanks to NGen �.0

More speed for your application
Recover a wealth of data

Data mining with SQL server
2005 analysis services

Team wins
Visual Studio Team System in use Special Edition

Databases Porting of SQL Windows Applications�

www.dotnet-magazin.de© Software & Support Verlag GmbH

The 1990s’ equivalent of today’s Visual
Studio was SQLWindows – the principle
development tool for advanced Windows
programming, especially of business ap-
plications for small and medium-sized
firms.

Many of the applications created
at that time are still in use and would be
difficult to replace. The programming
model for those Windows applications
would nowadays be described as fat (or
rich) client model. The SAL programming
language (SQLWindows Application
Language) is proprietary, as are most 4GL
languages.

The “fourth generation languages”
(4GL) were described as those languages
that were developed to take over from
the previous traditional languages such

as C, C++ or Smalltalk. However, SQL-
Windows was not the only 4GL. At that
time, the other members of the “Gang Of
Four” besides Gupta were Borland’s Del-
phi, Powerbuilder and Progress 4GL. The
uniqueness of 4GLs, and SQLWindows in
particular, was the way in which SQL was
directly integrated. This principle could
certainly be compared to the current con-
cept adopted by Microsoft with its LINQ
(Language Integrated Query). LINQ in-
tegrates SQL, XLink and XQuery que-
ries directly into the source code. Unlike
the SQL queries used by SQLWindows,
LINQ statements are precompiled and
then integrated as part of the code instead
of being integrated as SQL commands.
Precompilation of the statements allows
the compiler to run a syntax check. This
prevents attacks such as those using SQL
injections.

SQLWindows and the other 4GL
products of that era were not only the
leading development tools of the time
but above all were the main players in
the client / server movement that gained
momentum in those days. These tools
enabled business applications for the
PC to be developed for the first time on
such a large scale. According to Gupta,
approximately 10,000 licenses of the de-

velopment environment were sold. .SQL-
Windows was used in a wide variety of
business sectors. The applications range
from telecommunications, the financial
sector and medicine as well as mechani-
cal engineering.

Back to the future with Ice Porter
IT would not be IT if it were not capable
of self-replication. SQLWindows develo-
pers would like to be able to use transla-
tion technology to compile their source
code into different code forms.

Every compiler and runtime engine
that processes intermediate code is after
all nothing more than a translator that
takes the code of a specific language and
syntax and immediately transforms it in-
to a different language and syntax, while
retaining the same semantics. When you
consider this fact, it is surprising that
this technique is not used more often. Of
course, exceptions are the constructs and
features peculiar to each language. Every
second or third generation programming
language, which implies Java, Visual Ba-
sic, C#, pseudo-code and even the latest
concepts such as XAML, are basically
just programming metaforms and are al-
ways being transformed from one form
into another.

Latecomer from the 90s

by Johann Baumeister

Since the 1990s, Gupta SQLWindows has been used to develop many applications that were dep-
loyed primarily in small and medium-sized firms. To ensure not only its future deployment but also

its continued development, the Ice Tea Group, a group of SQLWindows developers, provides com-
prehensive porting options to the .NET Framework 2.0.

Migrating SQLWindows applications to .NET with
the aid of the Ice Tea Group’s porting tools

Contents
An overview of SQLWindows application to
.NET migration

Summing up
Many applications for small and medium-
sized firms were created in the 1990s using
SQLWindows. Now these applications can
finally be migrated to .NET thanks to tools
from the Ice Tea developer group

clear & brief

Porting of SQL Windows Applications

www.dotnet-magazin.de

Fig. 1: The source
program is analyzed
using PPJ-Inventory.
The values provide
a ballpark time
estimate for the up-
coming porting

A group of SQLWindows developers
appears to be of the same opinion. This
group provides a SQLWindows to .NET
code translator called Ice Porter.

 These programmers, who joined
forces under the name Ice Tea Group [1],
have set themselves the “Porting Project”
challenge of transforming the remaining
applications as simply as possible into
.NET code using the Ice Porter. A com-
pelling reason to work on this project
was the takeover of Gupta by the Unify
Corporation. Some software houses were
concerned about the continued develop-

ment and future of Gupta tools, which in
the meantime are being sold as Centura
tools. This is not without justification,
since this is already the third takeover af-
ter the change of ownership from Gupta
to Platinum Equity in 2000 and then to
Halo Technology Holdings, Inc at the be-
ginning of 2005. The Hessian software
company fecher, which is also a member
of the porting project, has supported and
successfully implemented many Gupta
projects in German-speaking markets.
These markets have always been of parti-
cular importance to Gupta[2]. Fecher also
consider the outlook for Centura Team
Developer as a Windows development
platform to be at risk and will be giving
priority to .NET in future.

Porting a program from SQLWin-
dows to C# or Visual Basic involves se-
veral stages. Firstly, the SQLWindows
code is analyzed in order to estimate the
effort involved in porting the application.
The Porting Project supplies an inventory
tool, PPJ Inventory, for this purpose. This
analyses the complexity of the code, for
example, the number of lines of code, the
functions, windows or external libraries.
The tool is provided free of charge and can
be obtained, for example, from fecher.
The results of the initial analysis provide
a ballpark figure for the effort needed for
the upcoming porting.

Translating code using the Ice Porter
The code translation itself is done using
the Ice Porter. The SQLWindows source
program is passed to the Ice Porter, which

Listing 1

A sample procedure in SQLWindows

Function: GotCompanyID

 Description: Uses the the COMPANY_ID table to generate

 a new company ID

 value.

 GotCompanyID(dfnID)

 Returns

Boolean:

 Parameters

 Receive Number: nID

 Static Variables

 Local variables

Number: n

 Actions

 If SqlPrepareAndExecute (hSql,

 ’SELECT @NULLVALUE

 (MAX(COMPANY_ID), 0)INTO :nID FROM

 COMPANY‘)

 If SqlFetchNext(hSql, n)

 Set nID = nID + 1

 Return TRUE

 Return FALSE

Portierung von SQLWindows-Anwendungen

Jetzt online abonnieren

dotnetmagazin.de

GEBRACHT

AUF DEN
PUNKT

Core
AJAX & Atlas .NET

Visual Studio Application

Lifecycle Management ASP.NET Best
Practices BizTalk Server Business Intelligence

C++/MFC Architektur/Patterns Com-

munity/Events Datenbanken/ADO.NET Daten-Persis-

tenz Visual Basic DirectX Microsoft Of� ce/Visual

Studio Tools for Of� ce .NET Framework Tablet

PC und Smartphones Mobility Objekt-orientierte

Entwicklung Security O/R Mapping Performance-

Tuning Portal-Technologien C# Requirement

Management SharePoint-Technologien SOA
SQL Server 2000 & 2005 Tests & Tools

WinFX Windows Vista
XML

Databases Porting of SQL Windows Applications�

www.dotnet-magazin.de© Software & Support Verlag GmbH

has recently released an update of that
once highly popular development tool in
the form of Team Developer 5.0. In any
event, it remains an exciting time for the
developers involved – perhaps too much
excitement at times.

then generates .NET code as best as it can
in the chosen language. Visual Studio
processes it further and compiles it. This
will always take the form of a project, i.e.
it will span several months and also re-
quire manual intervention. It is virtually
impossible to perform a totally automatic
transfer without developer involvement.
QuickObjects from SQLWindows Quick-
Graph, QuickMail or QuickReports are
not supported. Alternative approaches in
.NET must be implemented. In each case,
the effort involved in porting is substan-
tially lower than the cost of a brand new
development. Of course, it ultimately
depends on the nature of each individu-
al project. The Ice-Porter does not claim
to be able to port everything. The smaller
market and sales figures compared to tho-
se of a universal development tool also
account for more restricted development
efforts for the Ice Porter. After porting the
source code with the Ice Porter, code op-
timization (refactoring) can begin. Accor-
ding to fecher, part of the manual process
is the adaptation of low-level system rou-
tines. These have already been found by
the initial code analysis and any manual
corrections are performed by the porting
team. ActiveX controls and COM objects

usually run without any problem, since
we are dealing with a Microsoft techno-
logy that is also supported in the target
environment.

The database can be migrated while
the source code is being converted. At a
very early stage Gupta supplied its own
database, SQLBase, for data storage. It is
also still being maintained and developed
but is now trailing behind the competiti-
on, i.e. the big players such as IBM, Oracle
und Microsoft. These days it can still be
found, especially in the niche market of
embedded systems. The decline is unli-
kely to be due to the technology used by
SQLbase, but rather due to the fact that
the competition offers the entry-level
version of their databases in the form of a
free express edition. It is very difficult for
a database that is not free to maintain its
position against such odds.

SQLWindows lives on in spite of
.NET
The Ice Porter provided by members and
partners of the Porting Project is without
a doubt a supportive and useful tool for
porting SQLWindows applications. Ne-
vertheless, the Unify Corporation does
not intend to drop its SQLWindows and

Johann Baumeister is a University educated
computer scientist with many years of experience
in the development, application and rollout of IT
systems. His specialties include Web applications,
collaboration, client / server and databases. He
lives near Munich and works as a freelance con-
sultant and technical author.

 Eternal Links & References

[1] www.iceteagroup.com

[2] www.fecher.eu und www.fecher.eu/porting

fecher e. Kfm.
Eberhard Fecher
Seestrasse 2-4
63110 Rodgau
Tel: +49-6106 605-0
Fax: +49-6106-605-200
E-mail:
eberhard.fecher@fecher.eu
Internet: www.fecher.eu

Listing �

/// <summary>

 /// Uses the the COMPANY_ID table to generate a new

 company ID

 /// value.

 ///

 /// GotCompanyID(dfnID)

 /// </summary>

 /// <param name=“nID“></param>

 /// <returns></returns>

 public static SalBoolean GotCompanyID

 (ref SalNumber nID)

 {

 #region Local Variables

 SqlLocals.GotCompanyID locals = new SqlLocals.Got

 CompanyID();

 #endregion

 #region Actions

 using (new SqlContext(locals))

 {

 try

 {

 // PPJ: Assign parameters to the locals instance.

 locals.nID = nID;

 if (Var.hSql.PrepareAndExecute(“SELECT @

 NULLVALUE(MAX(COMPANY_ID), 0)INTO :nID FROM

 COMPANY“))

 {

 if (Var.hSql.FetchNext(ref locals.n))

 {

 locals.nID = locals.nID + 1;

 return true;

 }

 }

 return false;

 }

 finally

 {

 // PPJ: Assign back receive parameters.

 nID = locals.nID;

 }

 }

 #endregion

}

The conversion result in C#

