porting”
project

Porting Process

What to expect from the migration project with us, how we collaborate with you and
how we ensure that the project is successful.

We make the process of porting a Gupta application to Microsoft .NET simple, clearly separated in
well defined phases, and easy to manage. With our approach you will be able to assess the progress
being made at any time. The outcome of each phase is used as the input for the next.

We do not sell a black box solution, where we convince you to give us your code and wait for us to
give you a "turn-key" solution, a large bill, and a lot of work that still needs to be done. We do not
complicate things with endless paperwork and excuses to charge more man-hours.

We estimate everything upfront. We define simple and self-contained steps with a clear input and a
verifiable output. We guarantee everything we do and if we make a mistake, we fix it at our cost.

These are the major typical phases in a Porting Project:

Figure 1 - Phases in a Porting Project

© Ice Tea Group, LLC Page P.

Five Steps to Happiness

We know that it seems simple and that others like to use a lot of arrows, lines, and colorful blocks to
describe their super-duper solution. Usually the more fancy the diagrams, the less substance is
behind the paper. Our approach, on the contrary, is to Keep It Small and Simple. Or KISS.

We have, in fact, simplified the process as much as possible because our technology and
methodology are solid and both have been refined on the field. We don't need to confuse our clients
to be able to shift the blame and the unforeseen costs; our process is transparent and we are fully
confident in the outcome.

Obviously there are bumps in the road, any software project has problems. The key is to have a
technology that is flexible enough to accommodate any adjustment for unforeseen problems, and a
process that can detect most problems as early as possible and thus reduce the overall risk to a
manageable level.

Here is what we do:

1. Inventory & Assessment (lIA)

In the Inventory & Assessment phase, we use our automated tools and professional services (read:
experience) to create a full inventory of all the components in the system to transform and to identify
all the issues that will require special attention.

The analyzer tool, called PPJ Inventory, generates a list of all known potential problems found in the
source code. We look at each issue carefully and evaluate if it can be safely handled by the
translation tool and addressed after the conversion to .NET, or if we have to modify the original SAL
application in order to increase the quality of the generated code. The end result is to have a higher
and better conversion and reduce the overall cost of the project.

Fle Workspace |
= = M
e —

) ‘workepace e Mo Messsge (= Tomw Cound =

+ [Applcations Warng ZI08 Vel Furction requines specil of detrE000LAp 0.4 4

= d :*“"” Warring ZID4 Message rof mpperied: SAN B deriD0Lap 2 i

= _:'T‘T'::' Warming ZI0E Librery not mupges eotruct, ¢ dhatriZTO0. apt

I_ : .;..:,:r,;:_ Waming ZI01 Yeld Funchon requees specl of detngetnapt | i

& 3l Reports Waming ZID4 Message not spportedt SAM R detrigetnapt LD 5

+ 3 Mscelansous Waming ZL0E Ubrary not supported: qokdec.a detrigetr.apt

& Anshens Buw iy Warig 20 Fek nob besd Format CHIdeSTRLICTL
Warring 2004 Fie i nol beet Fommat et agl
wWarrwg 204 Fe o nad beel Forrrat Dwsielrwd gl
Waming 2004 Fis i not bect Formet Errorsd . ad
Warming Zim viekd Funchion regueres soecl of LID_Srtices apd 0.]
Waming ZIDE Wield Funchion requines special st LIB_Commune s 0.2
Waming ZI0S Lbrary not supported: gokdvc.a LIE_Elasblisseme
Warring Zi01 Yield Furction reguines specil st LIE_Fourrises 0.2
Warring ZL00 Yisld Furchion regquines agsscisl ol LIB_Poecep agd 0.2
Warring F1iH Yiukd Fyrwchon reguess mrecl o hiormer TG oand 0.3
Waming ZI03 Derwed From inberral dess: oQui lormes0LG.m0l 2
Waring ZI0L Vel function reguires special ot NormeslG a0l 0.1
waring ZI02 Derwed from mbermad daes: o0ul NormesTLG.apl 2
Waring 2003 Recssvely inckded Beary e vl O
Waring 003 Recursvely eckeled B ey Har it g e
Warring 2004 Fils i not beet Format i ikl
Waring ZI03 Dersed From nberrey dees | o0ul WormesGobales 2
M (TR0 |

AZ reseages (7 erors, 35 warnings)

Figure 2 - PP] Inventory with list of detected issues.

© Ice Tea Group, LLC Page 2 of 8

Using the PPJ Inventory tool we also generate a comprehensive inventory of all the libraries,
dependencies, resources, external modules, and just about anything that we need to know in
advance to be able to correctly estimate the work need to complete the project.

(-]

Fis Worlspacs
oz s Ratetcs | Covdon
+ 3 Apphcations:
o [Librasies L EomE g
4§ Dynalbs e

P B rsren 4

& [Pencsces 4 Shared Liwares 1

[Repots .‘.‘['-ﬂ:l ks

+ [Mecellywos &) Externa

4 Anahs Rasulls Iﬁ:i-l,...... row -

@l Pepos %
] Mecelareos 1
il Ervors 7
&, wharmings 5
E £, hnctiom:
E Fers bobsl 3T, 62
E trerefrom Gupta bems
E trusadvom K54l dsn 1,154
T sgn bokal 54,255 240
L Ples kot 4L
S Estra tive 21h
! Comments LR
g T <
Ao
e
[Form wiridons -
[M0 o
[Tasla ‘Wiralowss w

Figure 3 - PP] Inventory with inventory results.

During this phase we also translate the entire application to .NET using Ice Porter (the translation
tool) and verify all the issues detected by the analyzer. This is a sort of "dry run". It gives us a clear
picture of how the translated project will look like and how it will behave in Visual Studio.

The outcome of this phase is a report that gives you a complete view of what's being converted, the
organization of the target .NET project, a reliable estimate of the extra work needed to complete the
project, and, most importantly, a serious tool for planning and managing the project on your end.

2. Partitioning & Preparation (PP)

Gupta Team Developer applications are usually monolithic programs. While the source code is indeed
organized in several files, the finished product is one executable containing everything coming from
the source code libraries. Dynalibs never worked very well and are used rarely. Even when dynalibs
are used, the source libraries contain forward declarations, circular references, duplicated items, and
So on.

In the Partitioning and Preparation phase we organize (separate) the original source code into logical
libraries. This sounds more complicated than it really is. We do not modify the source project at all
and we do not move the code inside the original libraries. We simply create a parallel set of SAL
outlines that group libraries at a higher level creating a modularized "view" of the system. This may
be a simple big common library or several layered libraries.

We use the dependencies report generated during the IA phase and the knowledge of your
developers to group the shared libraries into complete Team Developer files that correspond exactly
to one .NET project each.

The following simple diagram illustrates this process.

© Ice Tea Group, LLC Page 3 of 8

SAL Modules Target .NET Projects
Application1.app jAcme.Applicationl.app Acme.Applicationl.exe
Application2.app —— Acme.Application2.app Acme.Applicationl.exe
35235231 p-Acme.Common.apl Il:'} R R
Library3.apl Acme.Database.dll
Library4.apl -p-Acme.UserInterface.apl Acme.Billing.dIl
Library5.apl A D |

Librarvé. apl »Acme.Database.ap

Library7.apl »Acme.Billing.apl

Figure 4 — Sample Partitioning Diagram for an imaginary ACME company.

Clearly the diagram in Figure 4 is simplified. In reality, SAL libraries include other libraries that may,
in turn, be included by other libraries. There may be circular dependencies and broken references, as
well as duplicated symbols. We are well aware of all the possible complications, and we have most
likely already seen it in a project or another.

No matter how complex your system is, this technique works and works well. From one single
common assembly to several interdependent modules, we have already done it many times.

One of the many advantages of this technique is that the intermediate SAL files can be fully tested
and are guaranteed not to alter the original application because they do not contain any code.
Additionally, if the original files change during the project, all the intermediate SAL files are
automatically updated since the original libraries are simply linked.

The outcome of this phase is a well defined set (could be just one or two, or could be hundreds) of
SAL files that can be tested and are ready to be fed into the translation tool in the next phase.

3. Generation & Completion (GC)

Enters Ice Porter™. The amazing translation engine that makes it possible to switch technologies
without selling your first-born child.

Z C:\Projects\PP\Demoldemo_cs2.xml - Ice Porter by Ice Tea Group: g@gl

File Project ¥ew Help
O 6|3l M| F 2 »
=] workspace Name | Size | Path Dat
== 11 4pp.config % ojects’ emah2. Dheshealculator\App. config
=] calaulator 2] 4pp o TR0 CAProjects\PRI\DemanZ Dheshoaloulatardpp.canfig 742
= ’33 P App.es 2206 CAPiojects\PPI\Demos2 Dhesicaleulatoriipp.cs 471
- L‘ - [tssemblinfo.cs 2434 CAProjects\PRIADemo\2 OhestealoulatorAssembly... 772
il Elld_inar:i 8% &l calculator caproj 5221 CAProjectsPPIADemor2 Destealeulatoricaloulsto. . 941
i Doyl 68 calculator sin B CAProjscts\PRIAD ot Dicsheskculatoncsloulste . 571
o= o [5q. config 1290 CAProjects\PRINDemah2 Dheshoaloulatarbsal canfig 442
i] motgage [Coakehutton s 3475 CAPIojsctsPRINDemeh2 Dhshealculstor Controlsh, 541
- 15] mulithreading [CDisplayField s 281 CAProjects\PRINDemah2 Dheshoaloulatart Controlh... 341
5] musal 79 CRunctionButton s 2526 CAPIojectsPRINDenoh2 Meshoaloulstor Controlsh, 541
-] performance [P} CHumberBtton o5 2512 CAProjects\PRINDemah2 Dheshoaloulatart Controlh... 341
eI reports [P Caperstormutton s 252 CAPIojsctsPRINDeneh2 Meshoalculstor Controlsh, 541
p
e-lal reperts. M fmCale.cs IIE CAProjects\PRINDemahZ DheshoaloulatartFomstir.. 341
FJComst e TEE? CAProjsctsiPRINDenoh2 Deshoaloulstor Globsls 841
MEses 1462 CAProjects\PRINDemah2 DheshoaloulatortGlabalsh.. 941
It os 1452 CAPIojscts PRI Deneh2 Mheshoaloulstor Globslsh 841
B
Rles 65 1452 CAPIojscts PRI Denoh2 Meshosloulstor Globsls 841
B
Pvares 1452 CAProjects\PRIADemah2 DheshoaloulatortGlabalsh.. 941
< >
17 fles 711772007 1040 A

Figure 5 - Ice Porter in action.

© Ice Tea Group, LLC Page 4 of 8

The outcome from the previous phase (Gupta files ready to be translated) is used to configure the
project space in Ice Porter. Each SAL intermediate file corresponds to one .NET project in Visual
Studio. Each project must compile without errors.

Starting from the bottom-up, all the projects are ported and compiled. Ice Porter takes care of
incrementally removing all the SAL code that has already been ported in shared modules. The result
is a set of Visual Studio projects with virtually no duplicated code, clear and fully qualified references
among the modules, and a new clean and well organized project tree. All the projects can be loaded
at once in a single Visual Studio solutions and further code reorganization can be accomplished by
simply dragging & dropping classes from one project to another.

Our migration experts make sure that the code generated by Ice Porter is fully compilable and
runnable. Every trouble spot is isolated and clearly tagged for further processing. We have a
worldwide network of partners and migration experts trained on Gupta Team Developer, Microsoft
.NET and our porting technology.

Z C:\Projects\PP\Demoldemo_cs2.xml - Ice Porter by Ice Tea Group:

File Project Wew Help

O H |Gl O] F 2

Havigation: sk Lo
Ice Porter Welcome t me

Contents | Index | Search

[l sicome)
@Tmuhleshunliﬂg - ™
[7] Configuration portlng

@ User Interface e
@Poring project
[7] SAL Project Options
& Plug-In Libraries
[21When SqlErar
[7] Errors Welcome to the warld's most advanced and automated porting
& Warnings tool for Centura/Gupta Team Developer applications available today.

Todo
%Batch procedure Ice Porter™ is a very important component of lce Tea Group's (ITG)

orting technology and services, collectively named The Portin
@ Special Comments E,mjeg PP 9y i 4

0 Engine

OTranslanun Filters

Faor more information about The Porting Project visit
i iceteagroup. com

B 2004 - 2007 Ice Tea Group, LLC -

Al Rights Reserved
E It's fast and easy to use.

Ice Parter can convert any Teamn Developer application to C# or L
3 files FA1/2007 4:28 PM

Figure 6 - Ice Porter showing the built-in help.

Ice Porter is an advanced and mature tool that can port any Gupta application to C# or VB.NET. The
tool also supports plug-in translation filters for customized transformations. The filters can be written
in any .NET language and can manipulate the source Gupta code through a .NET CDK interface, the
intermediate CodeDom structures (XML-like code tree) generated by the tool, the output text files,
and Visual Studio project using the DTE interface.

The outcome of this phase is a complete Visual Studio .NET solution that fully compiles. This will be
input of the next phase, which takes care of smoothing things out.

4. Finalization & Testing (FT)

The old 80-20 rule about software development says that 80% of the time and effort is spent on last
20% of the project. While the 80-20 proportion is a metaphor, the general concept is correct also for
porting projects.

Finalization and Testing will most likely account for a large chunk of the overall time and effort of the
entire project. With most of the effort spent on small details. This is also why we stress over and over
that details are important and you cannot simply write off a particular Gupta feature simply because
there may be something vaguely similar in the plain vanilla .NET Framework.

In any case, if we are at this stage it means that now we have .NET project(s) that compile and

basically run. We don't have to work on Gupta code anymore. We may need the original Gupta
application for testing and comparing code flow, but from now on all our coding will be in .NET.

© Ice Tea Group, LLC Page 5 of 8

As the project manager for a very important company said about his developers " They have already
forgotten about Centura Team Developer. They look happy!!!!"

* Microsoft Visual Studin

Bl Ede Yew Pojpc fuid [ebug Dme ook Windom Communty
sl e A F Debug
digholummer ce [Design] & | dobLEREPAY, M5 ox [Desgn] & v
r ! ”“HH”TE]
L s
7] cveiiig.cu
| dghBARDecHS 5
y + | AR
o Ta“'""‘ i T MRk o
T o] ® T chgHiRLay s
¥ T AL aerce
gt Bt geil MS.cx ol
Fewd

Figure 7 - Several projects in a Visual Studio solution.

Finalization work is very important and must be carried out sistematically. Our method is to split the
work in logical groups and thoroughly work on each group. For example: all forms and dialogs have
to opened successfully in Visual Studio designer and all labels must be verified; all menus and menu
actions must be exercised; all missing functionality must be implemented; all button actions,
combobox, listboxes, and validation must be exercised, etc.

At this point we can also use one of the many unit testing tools that are available for .NET and create
unit tests for the ported code. Our favourite tool is NUnit, but there are many others that do a superb
job. Another great advantage of switching technology.

The output of this phase is an application that is ready for being deployed to the QA people. Typically
so-called power users that will do their best to break the application.

5. Quality Assurance (QA)

The Quality Assurance phase, a sort of beta release, is the last step before full deployment. This
phase is carried on by you (the customer) with our support to debug and fixed the defects that are
reported by the power users.

We use an online issue tracking system that is opened to our clients and partners to keep track and
address every single issue. The issue database is also used to log defects related to the PPJ]
Framework and make sure that whatever can be fixed at the lowest possible level is fixed there
instead of having to run after the same defect manifesting itself in different areas of the application.

© Ice Tea Group, LLC Page 6 of 8

rp— tmhawi F L 0 e

ey Bregoe OO0

B gt S

Mg ke o Lege erbep s e e b F

1% Gperaties Flia
e I e L L

Bl KT} i B

LA Wy A

Y o -

Figure 8 - PP] Issue tracking system.

After step 5 (QA) your application will be a Microsoft .NET application with all the inherent pros and
cons. We see this as the beginning of a new life for your application, not merely the end of the
porting project.

After the dust has settled and the application is fully running in .NET, you have a huge world of IT
options to choose from. Basically your application will say, once again, Hello World!

© Ice Tea Group, LLC Page 7 of 8

Working together

Our porting methodology is flexible and it's adapted to the unique needs of each customer and each
project. The goal is to complete the best possible conversion at the lowest possible cost. Our solution
costs less than any alternative not because we do it on the "cheap", but because we focus on the
technology, automation and collaboration, which allows us to distribute the cost among all projects
and reduce the overall risk for all projects.

We know very well that you have a unique knowledge about your systems and we certainly want to
reuse it. Most of our conversion experts are developers and consultants that have also worked for (or
are still consulting for) companies with Gupta applications. We know first-hand what it means to have
an application that has been developed over many years and that contains very valuable business
knowledge. The code in the original application is the product of countless hours of programming and
testing. To throw it all away and restart from beta 0.1 doesn't make sense for us.

Our process is setup to let us carry on the phases where we can be more effective, and to use your
knowledge and developers where you can be more effective. The goal is to reduce the external costs
and maximize existing knowledge.

This is how we achieve our goal:

During the Inventory and Assessment phase we interact with your IT people to make sure
that we have an accurate picture of the system. One of the outcomes of this phase maybe a
list of simple changes that can be applied to the source applications and that will reduce the
overall cost of the project.

During the Partitioning and Preparation phase we interact with your IT people to either
gather enough information to achieve a better separation of the system into modules; or we
simply support your IT department and let you organize the code to be ported following our
general guidelines.

During the Code Generation and Compilation phase we may retranslate the same code
several times and collaborate with your developers and managers until we have generated
the best possible code that meets your specifications.

The Finalization and Testing phase is where we collaborate with the customer the most. In
many cases this phase is entirely carried on by the customer with our support.

In the Quality Assurance phase we are only on the receiving end of the project. Our job is to
quickly address any issue that you report and to make sure that each issue is investigated
well and deep enough to reduce QA time and avoid having to address the same problems in
different areas of the application.

After the project is completed, we keep maintaining and updating the PPJ Framework (our
compatibility library). We make sure that all known defects are addressed and that the library
is up to date with all new .NET releases, ADO.NET drivers, and Windows versions.

Conclusions

Changing the underlying technology of an application is not easy and it carries many risks. We believe
that we have the most advanced technology as well as the most flexible methodology to achieve a
virtually risk-free migration.

Most importantly, we give you all the tools, all the information, and all the checkpoints that allow you
to make the right decision and to monitor the project very closely.

© Ice Tea Group, LLC Page 8 of 8

