porting”
project

Porting vs. Manual Migration

Porting, Migration, Conversion, Modernization, Translation, Transformation are all
the same thing. The difference is in the technology, methodology and the people
behind it all.

Many words can be used to define a Porting Project. We can call it Migration because we are
migrating to a different system. Or we can call it Conversion because the application is being
convertedto run on a new platform. We could call it Translation because, after all, the source
language is being transiated to a different language. And we could also call it Modernization, since
the final product will (hopefully) be modern software.

Ultimately it doesn't really matter what we call it. The project starts with software written using Gupta
SQLWindows/Team Developer and ends with similar software written in one of the .NET languages.
The source application requires the Gupta runtime and the Gupta development tool. The target
application requires the .NET Framework and Visual Studio.

In a nutshell, the Source Gupta Application is Ported to a Target .NET Application.

Source Gupta
Application

Target .NET

Figure 1 - Porting Project lifecycle

It doesn't get more complicated than this. However, the key is in the process box (if you remember
flowchart diagrams), the one labeled "Porting Process". Whatever happens in that box is what makes
the difference and what determines the shape of the Target .NET Application. (For a detailed
description of what to expect in a Porting Process, read the Porting Process white paper.)

After the application has been ported to .NET, it must run and must run well. It must run at least as
well as the source application was running before the migration. It must also be manageable,

© Ice Tea Group, LLC Page 1 of 9

extensible, understandable to both .NET and Gupta developers, and it must be a good .NET and
Visual Studio citizen.

The structure of the new code should be consistent, well organized, traceable from the original
application and viceversa (to simplify the life of the developers and testers), should work well with
Visual Studio's IntelliSense, Designers, Documentation tools, Code Analyzers, Refactoring tools, and
any third party tools. Simply put: the generated code must be good .NET code.

Automated Porting or Manual Migration

Do you want to rewrite all or parts of your application using external developers that know very little
about your system's architecture and your business processes? Or do you want to rely on an
automated and tested tool that preserves all the original system's Business Logic and User Interface?
This is the question.

We'd like to save your time: If you have decided that your current Gupta system is not worth saving
and you want to redesign and rewrite the application from scratch, then you can stop reading this
document.

If a sales person, probably without any real Gupta migration experience, is trying to convince you
that rewriting parts of your code by using their consultants is better than automated porting, keep
reading. We may be able to save you a lot of time, a lot of money, and a big headhache.

Manual Migration involves using 1) a tool that partially ports the simplest parts of the code; 2)
consultants and developers that try to reverse engineer the source code and rewrite from scratch the
parts that have been left out by the tool.

The tool usually generates large log files containing a long list of issues that must be addressed by
the developers. The structure of the code that is generated by the tool is usually not very coherent
and poorly organized. The focus of the migration is not the tool, it's the manual work needed to fill in
the (sometimes large) gaps and make the application work. It's usually priced and managed as a
Consulting operation.

Additionally, when the external developers start coding away they necessarily end up having to
heavily modify the generated code to hammer it in place. The result is most likely "Frankenstein"
code: A mix of different approaches, inconsistent coding styles, incompatible architectures (plural),
and a nightmare of testing and potential production failures.

The sale pitch is that after the external developers are done rewriting your code you get "real .NET
architecture", according to the architects, of course. But... If the manual work is so much better than
the automatic work, why not go for a total rewrite? The answer is that it would be too expensive and
unreliable: you'd be restarting from release 1.0.

So, the sales guy says, a mixed Manual Migration approach gives you the best of both worlds: you
save money on the parts that can be generated automatically, and get a good architecture for the
parts that are written manually. It's a cost/time/quality compromise. Sounds good, on paper, but it's
not true in reality. By the time you find that out it may be too late to rollback. You will have to keep
coding and coding and coding until the project works... or it's scrapped. And when you are done, the
newly coded parts are probably at release 1.0 level anyway.

This is why we strongly advise to verify before buying into any buzzword or marketing pitch
(including ours). Ask for a full translation of your code, ask to try a Proof of Concept —make sure that
the POC contains a good selection of the various techniques used in the application— and ask to verify
and test first-hand how the Proof of Concept behaves with real data and real users.

Automatic Porting uses 1) a sophisticated translation tool that ports a//the source code using
consistent and tested algorithms and structures; 2) developers that adjust and implement the few
and well defined parts that have been clearly isolated and tagged by the tool. There is no reinventing
the wheel and the outcome of the project is guaranteed to be a success. The result is a consistent,

© Ice Tea Group, LLC Page 2 of 9

solid and coherent code based on a reliable architecture that is fully compatible with .NET
architecture and your system's architecture.

We have the best Automated Porting solution in the world. That is why we are open to any test and
evaluation, we do in fact encourage all porting candidates to verify and compare.

Porting an existing enterprise system to a completely different platform is a serious and delicate
business. Thinking that you can remove the foundation from under a building and replace it with
something else that will be designed as you go along, is not a good idea. Only a reliable, road-tested,
and solid process and technology can be considered a viable migration solution.

We preserve your release level.

Checklist for migration solutions

In the table below we have collected a number of issues that we know to be crucial in any porting
project. The issues are related to the translation of the source code, report templates, and to the
compatibility library used by the new system (all migration solutions have a compatibility library).

This list is based on a vast experience in porting. We have ported a large number of applications, the
biggest Gupta applications, and the most complex Gupta applications. In our experience, any of the
listed issues is enough to break a project or a deployed application. Lack of full support for any of the
issues listed below can mean countless hours of development work during the project, deployment
failures, and ultimately a product that doesn't work as expected.

Late Bind Calls

Description: In SAL (Gupta's programming language) there is a peculiar syntax called "late
bind call". It's used by prefixing a local method call with two dots. The result of
such a call is to make the function being called fully virtual, therefore the control
goes to the last override of the specified method. However, the same function
can be called without the double dots, which results in calling the local
implementation.

Our approach: We fully translate all late bind calls into real virtual methods. Including late bind
calls coming from multiple-inheritance classes. Our approach does not use any
reflection or runtime trick, we transform the original SAL to the best possible
Object Oriented equivalent. We do not require additional manual work.

Bad approach: Calling late bind methods using reflection is probably the worst possible
approach since it's not needed and results in breaking the reference to the
method that is now a string in the new code, interprted at runtime.

[! | Multiple Inheritance

Description: Gupta Team Developer supports Multiple Inheritance. Microsoft .NET supports
only Multiple Interface Inheritance. Most Gupta applications use multiple
inheritance to share functionality among classes without duplicating the code.

Our approach: We fully translate all multiple inheritance structures to the best possible single
inheritance equivalent by using the delegation technique and by leveraging the
use of interfaces and operators overloading. The result of our transformation of
SAL class structures into .NET class structures is that the inherited code is never
duplicated. After the migration is complete, developers working on the new
application can work on the shared base classes without having to modify the
same code in all inherited classes.

Bad approach: There are several approaches for simulating multiple inheritance in a single
inheritance environment. The worst is to duplicate the code inherited from
second-base classes into the derived classes. Other bad approaches consist in
creating a parallel interface system and delegating calls to static methods.

© Ice Tea Group, LLC Page 3 of 9

v e

H i

Visual Inheritance

Description:

Gupta Team Developer fully supports visual inheritance, where a visual class
(i.e. DataField, CheckBox) inherits all the visual properties (i.e. Background
Color, Alignment) of the base classes.

Our approach:

We fully support visual inheritance both at runtime and design time. That means
that developers using the code that we generate, can alter a visual property in a
base class and automatically all the derived classes inherit the new value. This is
possible only because our support library (PPJ Framework) extends Visual Studio
designers and considers properties inherited from base classes like properties
inherited from a base form. By default, in Visual Studio, the property values
inherited from classes are copied in the form and the inheritance is broken. That
means that without our extension if you want to change the font of the base
class for all labels, for example, you have to do it on each single label
throughout the application.

Bad approach:

Copy visual property values in each form's InitializeComponent() method.
Sometimes the property values are not copied during the initial translation, but
as soon as the form is modified in the designer all the properties (even
properties that should be hidden) are serialized into the form.

Visual Multiple Inheritance

Description:

Gupta Team Developer fully supports also visual multiple inheritance, where a
control class may inherit properties and Message Actions handlers from multiple
base classes. Also, in Gupta, a form class may inherit child controls from multiple
base form classes. Microsoft .NET doesn't support Multiple Inheritance and much
less Visual Multiple Inheritance.

Our approach:

We correctly translate visual multiple inheritance into a special
InitializeComponentEx() method and preserve all the property and event
handlers inheritance both at runtime and design time.

Bad approach: Ignore this (common) case and approach it by hand. It costs a lot of money and
inevitably the solution is to duplicate code and property assignments. In same
cases the solution added by hand ends up also being incompatible with Visual
Studio.

I Automatic Code Modularization

Description: Gupta Team Developer never supported real dynamic modules. Applications are

usually compiled as big monolithic executables. Dynalibs are a partial solutions
but have never worked well and are seldom used in production. One of the
many benefits of changing technology and moving to Microsoft .NET is to be
able to use assemblies and dynamic loading to modularize an application.

Our approach:

Our translation tool (Ice Porter™) is able to automatically reference multiple
plug-in assemblies and remove the code already ported from the application
being translated. By using the "differential" approach we can automatically split
any application into dynamically loaded modules.

Bad approach:

Reorganize the code and references manually after porting. While additional
reorganization of the separated module is not a bad thing by itself, approaching
the entire modularization refactoring by hand is costly, inaccurate and will lead
to many problems.

© Ice Tea Group, LLC

Page 4 of 9

v e

H i

Table Window Control

Description:

The most complex and thus the most custom control in Gupta Team Developer
is the Table Window Control. Like most grid controls out there, it is heavily
proprietary and tailored for the Gupta environment. Most SAL application use it
in a many ways, including complex additional customizations.

Our approach:

We have licensed the most flexible and well-known grid control for the Microsoft
environment (FlexGrid.NET from ComponentOne) and we have built a Table
Window interface around it. All SAL functionalities are fully supported (including
the different populate methods, column controls, split table, etc.), while the base
grid control is still fully accessible to the code to allow for future enhancements.
We also support the XSalTableWindow and M!Table extensions. We have an
OEM license for the FlexGrid.NET that allows us to redistribute it with our PPJ]
Framework to any number of developers.

Bad approach:

Build a custom control that resembles the Table Window, or try to support only
the most common features by porting to a DataGrid or a third party grid and
leave most of the complex work to be done by hand. Also not supporting
population methods such as FillNormal or FillBackground can be a major
problem when the application has to deal with real data, which usually occurr in
production, which is the last place where you want to see errors of this kind.

Child Table Windows

Description:

Child table window controls are a very special object in Gupta Team Developer.
They are a mix between an instance of a control on a form and a full fledged
class. In fact, child table windows are the only control that allows you to add
fields and methods and to override late-bind calls directly in the control
definition on the form.

Our approach:

We generate child table controls as child classes fully encapsulated in the
hosting form. This approach allows us to support all the features of child table
controls, to keep the code clean, avoid the proliferation of oddly named classes,
preserve and support all SQL statements, and to fully design the child control
thanks to an enhanced designer that extends Visual Studio default control
designer.

Bad approach:

Porting child table windows to a separate class is a decent alternative, however
you end up with many additional classes that did not exist in the original
application, you have a naming convention problem, maintenance problems and
you still cannot fully design the child table control on the form. Trying to fit child
table controls into a simple control instance is the worst approach because it
doesn't work with most of the real code and requires a large amount of manual
work and major rewriting of the code being ported and of all the SQL statements
scattered around the application.

M

Database Connectivity

Description:

Gupta Team Developer connects to a variety of databases through custom
drivers. The most common database engines used by Gupta applications are
Oracle, SqlServer, and Gupta SQLBase. Additionally, Gupta can connect to most
ODBC and OLEDB sources. Connectivity was one of the major strength of
SQLWindows/Team Developer.

Our approach:

Our connectivity layer is fully based on ADO.NET and we support any ADO.NET
driver. We transparently support both connected (DataReader) and disconnected
(DataSet) modes. Applications ported using our solution work equally well for
few records or for several millions of records.

Bad approach:

Supporting only predefined ADO.NET drivers limits the connectivity of the new
application. Not supporting the connected mode (DataReader) simply makes the
application unusable for large result sets, increases the memory consumption on
the client side, and slows down the application considerably.

© Ice Tea Group, LLC Page 5 of 9

N

V]

<

Oracle Support

Description:

Gupta Team Developer implements additional support for Oracle anonymous
PLSQL blocks and stored procedure calls with return arguments and array return
arguments in special functions.

Our approach:

We transparently support all Gupta's SqIORA* functions through Oracle's
ADO.NET driver and Microsoft's Oracle ADO.NET driver.

Bad approach:

Ignore Oracle's non-standard functions thinking that they can be easily re-
implemented manually. It's not easy and it will cause major problems in the
project.

SalCompileAndEvaluate

Description:

SalCompileAndEvaluate() allows Gupta applications to execute expressions at
runtime. Unfortunately there is no equivalent in .NET and this feature is widely
used in most SAL applications.

Our approach:

We fully support SalCompileAndEvaluate() using a simple and very fast script
evaluation engine that can support any syntax. The built-in syntax is C#, but we
can support SAL, VB.NET or any language that can be parsed. Our script
evaluation engine used reflection and dynamic IL generation and executes much
faster than the original SAL application.

Bad approach:

Pretend that SCAE is the same as reflection in .NET and claim that it's not a
problem, until it is a problem and you have to pay dearly for all the extra work
and delays caused by overlooking a very important feature.

Bind Expressions

Description:

One of the strength of Gupta Team Developer was the support for bind
expressions directly into SQL statements. It was a kind of "Embedded Sql" as
seen in various C/C++ preprocessors and other languages. Bind expressions in
SAL can be anything, including calculations, array element access, function calls,
member access, etc.

Our approach:

We parse out all bind expressions and adapt the SQL statements to the selected
ADO.NET driver, and we use our evaluation engine to resolve the bind
expressions. The result is that the original SQL code doesn't need to be rewritten
and the execution is extremely fast (faster than the original application and
faster than reflection and many .NET object binding libraries) because of our
advanced dynamic IL code generator.

Bad approach:

Attempt to reorganize and rewrite all SQL statements and code in the application
to eliminate bind expressions. It costs a lot of time and money and the result is
usually a mess because SQL execution and binding are usually at the foundation
layer of applications. Some solutions try to use a callback system (via events) to
simplify the manual code rewriting tasks which also slows down the code
considerably and makes the logic of the application hard to follow.

© Ice Tea Group, LLC Page 6 of 9

v

R i

Memory Leaks

Description:

Gupta developers never have to think about releasing memory or releasing
references. Team Developer takes care of memory management and doesn't
keep any hard reference to controls.

Our approach:

We have eliminated any kind of root referencing problem that cause a lot of
memory leaks in .NET. Microsoft .NET uses the garbage collector technique to
free memory used by objects not referenced. However, it's enough to store a
reference to a control or an object in a static variable (or array) to "leak"
memory. For example, if the porting solution translates SAL's Window Handle to
Control or to any custom type that keeps a reference to the control, you most
likely will have a big memory leak to deal with. We use weak references and an
idle loop to dereference closed forms to ensure that we do not cause any
memory leak. We also have fixed several bugs in the .NET Framework that are
known to cause memory leaks.

Bad approach:

Ignore memory management thinking that the Garbage Collector takes care of
everything. Any .NET developer knows that it's not the case and you have to
make sure that both the supporting library and migrated application do not hold
on root references longer than needed.

.NET Missing Features and Controls

Description:

Microsoft .NET Framework is a huge collection of libraries and classes. However,
many features and controls that are available in Gupta Team Developer are not
implemented in the .NET Framework.

Our approach:

We have extended all the basic WinForms controls by adding all the extended
features that are needed by professional business applications and have
implemented all the missing features that are needed by ported code.

Bad approach:

Implement missing features and controls in each project each time. The client
will have to pay the cost for rewriting and retesting the same code, and future
bug fixes can never be applied to "modernized" systems in a consistent and
reliable manner.

v

.NET Native Types

Description:

Gupta's SAL data types and .NET data types are similar but not quite the same.
For example, in .NET you cannot have a null date, or a null number, cannot
concatenate or use a null string, and so on. However, in .NET, there are
extended types used for database access. There is a SqlDecimal, SqlString,
OracleDecimal, OracleDate, etc.

Our approach:

We have developed extended types that replace Gupta types and are compatible
with .NET's custom database types. Our type system is also fully compatible and
based on .NET's native types: SalNumber wraps a Decimal value, SalDateTime
wraps a DateTime value. Additionall all PP] types support seamless and built-in
casting to the corresponding native type. During the translation process, our tool
decides to use native types directly when it's absolutely safe to do so (there is
no risk of breaking code at runtime), and uses the extended types in a coherent
and consistent fashion. We can also plug-in additional optimizers that are able to
determine the usage of a variable and select to use the most optimized native
type. In addition to all these options, we also support special comments in the
original SAL applications that allow us to indicate the preferred type directly in
the original application.

Bad approach:

Force the usage of native types without a proper analysis of the code and let the
testers deal with the runtime problems. Have an incomplete type system that
cannot be used in new development. Another bad approach is to write the
extended type system by using classes instead of structs. Classes are garbage
collected and any numeric value ever created in a function, loop, or any place in

© Ice Tea Group, LLC

Page 7 of 9

the app uses memory until the Garbage Collector frees it. In a normal
application in production this can account for millions of dead objects waiting to
be collected.

Visual Toolchest Support

Description:

Gupta Team Developer includes a former third party library called Visual
Toolchest or VIS. This library implements many functions and controls that are
missing from the standard environment. Many controls that are custom
implemented in VIS correspond to controls in Windows Common Controls library.

Our approach:

We have fully re-implemented the Visual Toolchest library in C# by extending
native .NET controls and classes, which in turn are based on Windows Common
Controls.

Bad approach:

Implement only the most common control and functions and rewrite the rest by
hand when needed. You end up with a mix of re-invented wheels, partially
tested existing code, and a nightmare of testing and runtime failures.

e\

L

Third Party Libraries

Description:

Gupta Team Developer has been extended over the years by a handful of third
party libraries. The most used ones are: XSal2, M!Table, and BuildingBlocks.

Our approach:

We already support XSal2, M!Table and BuildingBlocks. XSal2 and M!Table have
been redeveloped entirely in C#. BuildingBlocks has been ported in its basic
form and customizations that are found in each new project are added limited to
the project.

Bad approach:

Ignore third party libraries and sell additional man/hours for redeveloping
workarounds on each project.

[ﬁfg\mlm

Object Oriented Transformation

Description:

Most of SAL calls are not object oriented since all SAL types (visual and value
types) do not have any built-in method. It would be a good idea to refactor the
calls when porting to .NET.

Our approach:

We support transforming all type-related and visual-related functions to Object
Oriented calls. We are also able to refactor calls that use a receive argument
into straight assignments. For example: Call SalStrieft(s, 10, s)is tranformed to
s =s.Left(10);

Bad approach:

Not support object oriented transformations or support it partially without proper
refactoring.

v

Refactoring

Description:

Translating a Gupta Application into a .NET application without trying to refactor
the code adds little value to the newly generated code. There are a number of
refactoring transformations that can be applied safely to the code and that
increase the value of the new source code.

Our approach:

We apply several standard refactoring to the code: Object Oriented
Transformations, MessageActions Event Encapsulation, Virtual LateBind
Renaming, Embedding Resources, WhenSqlError Try/Catch Enclosure, etc.
Additionally we can apply any custom refactoring technique that is suited to the
specific project, like: Fields Encapsulation, Hungarian Notation Removal, Camel
Casing, Ambiguous Reference Resolution, SOA/WebService Wrappers, and much
more.

Bad approach:

Settle for few and inflexible transformations or apply the transformations by
hand.

© Ice Tea Group, LLC

Page 8 of 9

[‘! Customized Transformations

H i

Description: Automatic Porting doesn't mean that each and every application is treated
blindly the same. Contrary to what some sales people may contend, professional
automatic porting can and should allow for all sorts of customizations and highly
customized transformations.

Our approach: Our porting tool supports a flexible plug-in filters technology. Where custom
written translation filters (written in .NET and debuggable directly in Visual
Studio) receive over 30 events during several phases in the translation process.
Custom plug-in filters can be fully customizable and can interact with the code
being ported at all stages: directly with Team Developer's CDK, CodeDom pre
and post generation, and finally directly with the code renderer. Using such
flexible architecture, we are able to implement and automate just about
anything, on top of the several standard options already available.

Bad approach: Not supporting custom transformations.

=

| Support Library

<

!ﬁ_

Description: All migration solutions have a support library. It is not possible to port an
application to .NET without using a support library.

Our approach: We invest a major part of our development and testing efforts into our PPJ
Framework. We make sure that it's fully tested, complete and the most reliable
piece of software that we can possibly distribute to our customers. Since we also
realize that one of the reasons why our customers want to move away from
Gupta is to not be /ocked in a proprietary system and small company like Gupta
or Unify, or Ice Tea Group, we also distribute the full C# code for our PPJ]
Framework. Making our source code available to our customers also means that
we write the code in a way that is elegant, consistent with C# coding standards
and easy to maintain.

Bad approach: Not distributing the source code of the supporting library is a bad approach. Not
having a coherent and solid basic support library is another bad approach.
Having a support library written in Visual Basic or mixing different languages is
also a bad approach.

Table 1 — Migration Solution Checklist

There are many more issues to deal with, but we have decided to keep the list short. We know all
this because we have encountered all these problems in an application or another and have fixed
them all. Because of the way our porting process is structured, any experience we make on a project
is transferred to both our porting tool and our support library so that the next project will not deal
with the same problem. This is possible only because we invest in our automated tools and support
library trying to minimize manual work as much as possible.

Others have a different opinion and think that porting an application must necessarily be expensive
and it's a good opportunity to sell man-hours. Problems found in past projects have to be dealt with
each time as if it was the first time. Some sort of knowledge base may simplify this approach, but the
solution may almost never be the same otherwise it would be automated.

Conclusions

This paper is based on our experience in real and large porting projects (the largest known Gupta
applications in the world). Others may have a different experiences and opinions. Therefore we invite
you to test our approach and technology in comparison with any other approach, including a full
manual rewrite.

We are confident that we deliver the best possible quality, the lower possible risk at the lowest overall
cost.

© Ice Tea Group, LLC Page 9 of 9

